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1 Dérivées Partielles et Directionnelles

Soit f : U ⊂ E → F définie sur un ouvert U d’un e.v.n de dimension finie E.

1.1 Dérivée selon un vecteur

DÉFINITION : Dérivée Directionnelle

Soit a ∈ U et v ∈ E. La dérivée de f en a selon le vecteur v est, si elle existe :

Dvf(a) = lim
t→0

f(a+ tv)− f(a)

t

C’est la dérivée en 0 de la fonction d’une variable ϕ(t) = f(a+ tv).

1.2 Dérivées Partielles

Si B = (e1, . . . , en) est une base de E, on note f(x) = f(x1, . . . , xn).

DÉFINITION : Dérivée Partielle

La i-ème dérivée partielle est la dérivée selon le vecteur ei de la base :

∂f

∂xi
(a) = Deif(a) = lim

t→0

f(a1, . . . , ai + t, . . . , an)− f(a)

t

2 Différentiabilité

2.1 Définition et Différentielle

DÉFINITION : Différentiabilité (DL1)

f est différentiable en a s’il existe une application linéaire L ∈ L(E,F ) telle que :

f(a+ h) = f(a) + L(h) + o(∥h∥) quand h → 0

L est unique, on l’appelle la différentielle de f en a, notée df(a).

THÉORÈME : Propriétés

Si f est différentiable en a, alors :

1. f est continue en a.

2. f admet des dérivées selon tout vecteur v, et Dvf(a) = df(a) · v.
3. En particulier, df(a) · ei = ∂f

∂xi
(a).

Attention : L’existence des dérivées partielles n’implique PAS la différentiabilité (ni même la conti-
nuité).

Cours Complet Maths Spé 2



YASPREPA CALCUL DIFFÉRENTIEL

2.2 Matrice Jacobienne et Gradient

DÉFINITION : Matrice Jacobienne

La matrice de l’application linéaire df(a) dans les bases canoniques est la Matrice Jacobienne
Jf (a) ∈ Mp,n(R) :

Jf (a) =


∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
...

...
∂fp
∂x1

(a) . . .
∂fp
∂xn

(a)


DÉFINITION : Gradient (Cas Euclidien)

Si E est euclidien et f à valeurs réelles (p = 1), il existe un unique vecteur ∇f(a) ∈ E tel que :

∀h ∈ E, df(a) · h = ⟨∇f(a), h⟩

Dans une base orthonormée : ∇f(a) =


∂f
∂x1

(a)
...

∂f
∂xn

(a)

.

2.3 Opérations et Règle de la Chaîne

THÉORÈME : Différentielle d’une composée

Si f est différentiable en a et g différentiable en f(a), alors g ◦ f est différentiable en a et :

d(g ◦ f)(a) = dg(f(a)) ◦ df(a)

Matriciellement : Jg◦f (a) = Jg(f(a))× Jf (a).

3 Fonctions de Classe C1

THÉORÈME : Caractérisation

f est de classe C1 sur U ssi ses dérivées partielles ∂f
∂xi

existent et sont continues sur U . Dans ce
cas, f est différentiable.

PROPOSITION : Théorème fondamental (sur un arc)

Si f est C1 et γ : [0, 1] → U est un arc C1 reliant a à b :

f(b)− f(a) =

∫ 1

0
df(γ(t)) · γ′(t) dt

4 Dérivées d’ordre supérieur

DÉFINITION : Classe Ck

f est Ck si toutes ses dérivées partielles d’ordre k existent et sont continues.
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THÉORÈME : Théorème de Schwarz

Si f est de classe C2, l’ordre de dérivation n’importe pas :

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

5 Géométrie et Optimisation

5.1 Vecteurs Tangents

Soit X une partie de E. Un vecteur v est tangent à X en x s’il est la vitesse en 0 d’une courbe tracée
sur X passant par x. Exemple : Si X = {x ∈ E | g(x) = 0} (Ligne de niveau), l’espace tangent est
ker dg(x).

5.2 Optimisation Sans Contrainte (Ordre 1)

THÉORÈME : Condition Nécessaire (Point Critique)

Si f admet un extremum local en a (et U ouvert), alors a est un **point critique** :

df(a) = 0L(E,F ) (ou ∇f(a) = 0)

5.3 Optimisation Sous Contrainte (Lagrange)

THÉORÈME : Théorème des Multiplicateurs de Lagrange

Soit f la fonction à optimiser et g(x) = 0 la contrainte (f, g de classe C1). Si f admet un extremum
en a sous la contrainte g(x) = 0, et si dg(a) ̸= 0, alors :

∃λ ∈ R, df(a) = λdg(a)

Les gradients ∇f(a) et ∇g(a) sont colinéaires.

5.4 Optimisation : Étude au Second Ordre

Si a est un point critique (df(a) = 0) et f est C2 :

DÉFINITION : Matrice Hessienne

La Hessienne Hf (a) est la matrice symétrique des dérivées secondes :

Hf (a) =

[
∂2f

∂xi∂xj
(a)

]
1≤i,j≤n

THÉORÈME : Taylor-Young ordre 2

f(a+ h) = f(a) + df(a) · h︸ ︷︷ ︸
0

+
1

2
thHf (a)h+ o(∥h∥2)
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PROPOSITION : Nature du point critique

On regarde les valeurs propres de la matrice symétrique réelle Hf (a) :

— Toutes > 0 : Hf (a) définie positive =⇒ Minimum Local Strict.

— Toutes < 0 : Hf (a) définie négative =⇒ Maximum Local Strict.

— Valeurs propres de signes opposés : Point Col (pas d’extremum).
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