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1 Dérivabilité

Soit I un intervalle de R et E un espace vectoriel normé de dimension finie. Les fonctions sont définies
sur I à valeurs dans E.

1.1 Définition et Caractérisation

DÉFINITION : Dérivabilité en un point

Une fonction f : I → E est dérivable en t0 ∈ I si le taux d’accroissement admet une limite finie
dans E :

lim
t→t0

f(t)− f(t0)

t− t0
= f ′(t0)

f ′(t0) est le vecteur dérivé en t0.

PROPOSITION : Caractérisation par DL1

f est dérivable en t0 si et seulement si elle admet un développement limité à l’ordre 1 en t0 :

f(t) = f(t0) + (t− t0) · v⃗ + o(t− t0)

Avec v⃗ = f ′(t0).

1.2 Coordonnées et Interprétation

PROPOSITION : Coordonnées

Si B = (e1, . . . , en) est une base de E, alors f(t) =
∑

xi(t)ei. f est dérivable en t0 ⇐⇒ toutes les
composantes xi sont dérivables. Dans ce cas : f ′(t0) =

∑
x′i(t0)ei.

Interprétation cinématique : Si t est le temps et f(t) la position, f ′(t) est le vecteur vitesse tangent à
la trajectoire.

2 Opérations Algébriques

2.1 Linéarité et Composition

PROPOSITION : Opérations usuelles

— Combinaison : (λf + µg)′ = λf ′ + µg′.

— Composition (Fonction réelle) : Si φ : J → I est dérivable, alors (f ◦ φ)′(t) = φ′(t) ·
f ′(φ(t)).

— Composition (Application Linéaire) : Si L ∈ L(E,F ), alors (L ◦ f)′(t) = L(f ′(t)).
Attention : La dérivée d’une application linéaire constante est elle-même (en tant qu’applica-
tion), mais ici on dérive par rapport à t.
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2.2 Bilinéarité et Déterminant

PROPOSITION : Formes Bilinéaires

Soit B : E × F → G une application bilinéaire continue (ex : produit scalaire, produit vectoriel).
Si f et g sont dérivables :

d

dt
B(f(t), g(t)) = B(f ′(t), g(t)) +B(f(t), g′(t))

PROPOSITION : Cas du Produit Scalaire et Norme

d

dt
⟨f(t), g(t)⟩ = ⟨f ′(t), g(t)⟩+ ⟨f(t), g′(t)⟩

Corollaire (Norme constante) : Si ∥f(t)∥ est constante, alors ⟨f ′(t), f(t)⟩ = 0 (Vitesse ortho-
gonale à la position).

PROPOSITION : Déterminant

Si f1, . . . , fn sont n fonctions vectorielles dans une base B :(
det
B
(f1, . . . , fn)

)′
=

n∑
k=1

det
B
(f1, . . . , f

′
k, . . . , fn)

3 Intégration

Soit f : [a, b] → E une fonction continue par morceaux.

3.1 Définition et Propriétés

DÉFINITION : Intégrale

On définit l’intégrale composante par composante dans une base. Le vecteur obtenu,
∫
[a,b] f , ne

dépend pas de la base choisie.

PROPOSITION : Propriétés

— Linéarité :
∫
(λf + g) = λ

∫
f +

∫
g.

— Chasles :
∫ c
a f =

∫ b
a f +

∫ c
b f .

— Image par L : Pour toute application linéaire L :

L

(∫ b

a
f(t)dt

)
=

∫ b

a
L(f(t))dt

3.2 Inégalité Triangulaire (Fondamental)

THÉORÈME : Inégalité Triangulaire

Pour a ≤ b : ∥∥∥∥∫ b

a
f(t)dt

∥∥∥∥ ≤
∫ b

a
∥f(t)∥dt
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C’est la généralisation vectorielle de |
∫
f | ≤

∫
|f |.

4 Lien Dérivée-Intégrale

4.1 Théorème Fondamental

THÉORÈME : Intégrale fonction de la borne supérieure

Si f est continue sur I et a ∈ I, la fonction F : x 7→
∫ x
a f(t)dt est de classe C1 sur I et :

∀x ∈ I, F ′(x) = f(x)

F est l’unique primitive de f qui s’annule en a.

4.2 Inégalité des Accroissements Finis (IAF)

Attention : L’égalité des accroissements finis (f(b) − f(a) = (b − a)f ′(c)) est FAUSSE en vectoriel
(ex : hélice circulaire).

THÉORÈME : I.A.F.

Soit f : [a, b] → E de classe C1.

∥f(b)− f(a)∥ =

∥∥∥∥∫ b

a
f ′(t)dt

∥∥∥∥ ≤
∫ b

a
∥f ′(t)∥dt ≤ (b− a) sup

t∈[a,b]
∥f ′(t)∥

5 Formules de Taylor

5.1 Taylor avec Reste Intégral (Égalité)

THÉORÈME : Taylor avec Reste Intégral

Si f est de classe Cn+1 sur I, pour tout (a, x) ∈ I2 :

f(x) =
n∑

k=0

(x− a)k

k!
f (k)(a) +

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

5.2 Inégalité de Taylor-Lagrange

THÉORÈME : Inégalité de Taylor-Lagrange

Si f est de classe Cn+1 et si ∥f (n+1)∥ est majorée par Mn+1 :∥∥∥∥∥f(x)−
n∑

k=0

(x− a)k

k!
f (k)(a)

∥∥∥∥∥ ≤ |x− a|n+1

(n+ 1)!
Mn+1
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5.3 Taylor-Young (Local)

THÉORÈME : Taylor-Young

Si f est de classe Cn au voisinage de a :

f(x) =
x→a

n∑
k=0

(x− a)k

k!
f (k)(a) + o((x− a)n)
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